Processing math: 100%

Thực hành để thành công


Thứ Bảy, 27 tháng 10, 2012

Phương trình Logarit [Lần 8]

Bài 1. Giải phương trình: 2^x=1+\log_2(1+\log_2(1+\log_2(x+1)))


Điều kiện: x > \dfrac{1- \sqrt{2}}{\sqrt{2}}.
Bài này có lẽ được sáng tác dựa trên hệ phương trình hoán vị sau: \begin{cases} 2^x = 1+ y \\ 2^y = 1+ z \\ 2^z =1 + m \\ 2^m = 1 + x \end{cases}
Vì vậy ta sẽ đưa phương trình dã cho về đúng bản chất của nó Bằng cách đặt:\begin{cases} y=\log_2(1+\log_2(1+\log_2(x+1))) \\ z=\log_2(1+\log_2(x+1)) \\ m=\log_2(x+1) \end{cases}
 Ta có hệ đã cho trở thành:\begin{cases} 2^x = 1+ y(1) \\ 2^y = 1+ z(2) \\ 2^z =1 + m(3) \\ 2^m = 1 + x(4) \end{cases}

Không mất tính tổng quát giả sử x=max(x, y, z, m).
Suy ra 1+x\geq 1+m \Leftrightarrow 2^m \geq 2^z \Leftrightarrow m \geq z
\Leftrightarrow m+1\geq z+1 \Leftrightarrow 2^z \geq 2^y \Leftrightarrow z \geq y
\Leftrightarrow z+1 \geq y +1 \Leftrightarrow 2^y \geq 2^x \Leftrightarrow y \geq x

Suy ra x=y=z=m \Rightarrow 2^x=1+x \Leftrightarrow x=0, x=1.
Vậy x=0, x=1 là 2 nghiệm của phương trình đã cho.( phương trình cuối có thể dùng đạo hàm chứng minh phương trình có tối đa 2 nghiệm).


Bài 2. Giải phương trình sau \log_2(x^2+x+1)+\log_2(x^2-x+1)=\log_2(x^4+x^2+1)+\log_2(x^4-x^2+1)


Ta có \log_2(x^2+x+1)+\log_2(x^2-x+1)=\log_2(x^2+x+1)(x^2-x+1)=\log_2(x^4+x^2+1)
Như vậy phương trình viết lại thành \log_2(x^4-x^2+1)=0 \Leftrightarrow x^4-x^2+1=1 \Leftrightarrow x^2(x+1)(x-1)=0
Giải ra ta thu được phương trình có ba nghiệm x=-1, x=0, x=1.


Bài 3. Giải phương trình sau \log_4\left(x-\sqrt{x^2-1}\right).\log_5\left(x+\sqrt{x^2+1}\right)=\log_{20}\left(x-\sqrt{x^2-1}\right)


Điều kiện : \ \begin{cases} x - \sqrt{x^2-1} > 0 \\ x + \sqrt{x^2-1} >0 \end{cases} \Leftrightarrow \left[\begin{matrix} x \le -1 \\ x \ge 1 \end{matrix} \right.
Quan sát bài toán ta thấy ngay khi x=1 phương trình đã cho được thỏa vì x - \sqrt{x^2-1} =1 \Rightarrow x=1 nên x=1 là một nghiệm của phương trình đã cho.
Do đó bây giờ ta chỉ cần giải bài toán trên điều kiện : \ x >1 \ \vee \ x \le -1 là được.
Mặt khác ta để ý rằng : \ \left(x - \sqrt{x^2-1} \right) \cdot \left(x + \sqrt{x^2-1} \right)=1 nên ta hoàn toàn có thể tinh giảm đi độ rườm rà trong bài toán bằng phép đặt ẩn phụ.
Đặt  \ t = x - \sqrt{x^2-1} \Rightarrow x + \sqrt{x^2-1} = \dfrac{1}{t} \quad (t >0). Lúc đó phương trình đã cho được biến đổi thành : \log_{4}t  \cdot \log_{5} \frac{1}{t }= \log_{20}t  \Leftrightarrow -\log_{4}t \cdot \log_{5}t = \log_{20}t \quad (1)
Ở phương trình  (1) nếu quan sát về cơ số ta thấy ngay được 4 \cdot 5 =20 nên rõ ràng ta hoàn toàn có thể đổi cơ số để có được nhân tử chung. Cụ thể ta có : \log_{5}t = \dfrac{\log_{20}t}{\log_{20}5}
Từ đó dẫn đến phương trình (1) được biến đổi thành : - \log_{4}t \cdot \dfrac{\log_{20}t}{\log_{20}5} = \log_{20}t \Leftrightarrow - \log_{4}t = \log_{20}5 \Leftrightarrow t = 4^{-\log_{20}5}



Bài 4. Giải phương trình sau (x+1)\log_5^2(x+1)-(2x+7)\log_5(x+1)+10=0


Điều kiện: x>-1
Đặt \ \log_5(x+1)=t ta có phương trình:(x+1)t^2-(2x+7)t+10=0

Phương trình này có:\ \Delta=(2x+7)^2-40(x+1)=(2x-3)^2
Suy ra:\left[\begin{array}{l}t=\dfrac{2x+7-(2x-3)}{2(x+1)}=\dfrac{5}{x+1}\\t=\dfrac{2x+7+(2x-3)}{2(x+1)}=2\end{array}\right.

Trường hợp 1: \ t=2 \Rightarrow \log_5(x+1)=2\Rightarrow x+1=25 \Rightarrow x=24 \ (TM)
Trường hợp 2: \ t=\dfrac{5}{x+1}\Leftrightarrow \log_5(x+1)-\dfrac{5}{x+1}=0
Xét hàm số \ f(x)=\log_5(x+1)-\dfrac{5}{x+1} với \ x>-1
Ta có \ f'(x)=\dfrac{1}{(x+1)\ln 5}+\dfrac{5}{(x+1)^2}>0 trên (-1;+\infty)
Như vậy hàm số f(x) đồng biến trên (-1;+\infty)
Mặt khác ta có f(4)=0 suy ra x=4 là nghiệm duy nhất của \ f(x)=0
Kết luận: Phương trình có 2 nghiệm \ x=24; \ x=4


Bài 5. Giải phương trình:\log_{2012} \frac{4x^2+2}{x^6+x^2+1}=x^6-3x^2-1.


Điều kiện x^6+x^2+1>0.
Phương trình đã cho viết lại \log_{2012}(4x^2+2)+(4x^2+2)=\log_{2012}(x^6+x^2+1)+(x^6+x^2+1)

Xét hàm số f(t)=\log_{2012}t+t, t>0 là hàm tăng. Từ đó ta có
4x^2+2=x^6+x^2+1 \Leftrightarrow x^6-3x^2-1=0








Chia sẻ
  • Share to Facebook
  • Share to Twitter
  • Share to Google+
  • Share to Stumble Upon
  • Share to Evernote
  • Share to Blogger
  • Share to Email
  • Share to Yahoo Messenger
  • More...

0 nhận xét

:) :-) :)) =)) :( :-( :(( :d :-d @-) :p :o :>) (o) [-( :-? (p) :-s (m) 8-) :-t :-b b-( :-# =p~ :-$ (b) (f) x-) (k) (h) (c) cheer

 
© 2011 ThựcHành.vn
Designed by Nguoithay.vn Cooperated with Duy Pham
Phiên bản chạy thử nghiệm
Theo dõi bài viếtTheo dõi nhận xét
Lên đầu trang