Bài 1. Tìm nguyên hàm: \int x\left(1-\dfrac{e^x}{x} \right)dx
\begin{aligned} \int x(1- \frac{e^x}{x}) \text{dx} & = \int x \text{dx} - \int e^x \text{dx} \\ & = \frac{x^2}{2} - e^x + C\end{aligned} [*]$$
Bài 2. Tìm nguyên hàm \int\dfrac{x^2-x+3}{x+1}dx
\begin{aligned} \int \frac{x^2-x+3}{x+1} \text{dx} & = \int (x-2) \text{dx} + \int \frac{5}{x+1} \text{dx} \\ & = \frac{(x-2)^2}{2} + 5 \ln | x+1| +C \end{aligned}
Bài 3. Tìm nguyên hàm: \int \dfrac{x^4+1}{x+1}dx
Ta có: \dfrac{x^4+1}{x+1}=x^3-x^2+x-1+\dfrac{2}{x+1}
Do đó:\int \dfrac{x^4+1}{x+1}dx=\int \left(x^3-x^2+x-1+\dfrac{2}{x+1}\right)dx
=\dfrac{x^4}{4}-\dfrac{x^3}{3}+\dfrac{x^2}{2}+2\ln |x+1|+C
Bài 4. \int \dfrac{dx}{\sqrt{(x^2+1)^3}}
\sqrt{x^2+1} thì đặt x = \tan t và sau khi đặt thì ta được:
\displaystyle I = \int \frac{\frac{1}{\cos^2 t}}{\frac{1}{\cos ^3t}} \text{dt } = \int \text{d ( sin t)} = \sin t = \frac{\tan t}{\sqrt{1+ \tan^2 t}} = \frac{x}{\sqrt{x^2+1}}
t = \frac{x}{\sqrt{x^2+1}}
Đặt \displaystyle t = \frac{x}{\sqrt{x^2+1}} \Rightarrow dt =\frac{\sqrt{x^2+1}-\frac{x^2}{\sqrt{x^2+1}}}{x^2+1} \text{dx } = \frac{1}{(\sqrt{x^2+1})^3} \text{dx }
Và ta có:
I = \int \text{dt} = t = \frac{x}{\sqrt{x^2+1}}
\displaystyle\int \dfrac{\mbox{d}x}{\sqrt{(x^2+1)^3}}=\int \frac{\frac{1}{\sqrt{x^2+1}}}{x^2+1} \mbox{d}x=\int \frac{\sqrt{x^2+1}-\frac{x^2}{\sqrt{x^2+1}}}{x^2+1} \mbox{d}x= \int \mbox{d}\left(\frac{x}{\sqrt{x^2+1}}\right)
=\frac{x}{\sqrt{x^2+1}}+C
Bài 5. Tìm nguyên hàm: \int \sqrt[4]{x\sqrt[3]{x}} dx
Ta có \displaystyle \int \sqrt[4]{x \sqrt[3]{x}}\mbox{d}x =\displaystyle \int x^{\frac{1}{3}}\mbox{d}x
= \dfrac{3}{4}x \sqrt[3]{x} +C
0 nhận xét