Bài 1. Tính tích phânI=\int_0^{\dfrac{\pi }{2}} {\ln \dfrac{{{{\left( {1 + {\mathop{\rm s}\nolimits} {\rm{inx}}} \right)}^{1 + \cos x}}}}{{1 + \cos x}}} dx
Đặt: x=\dfrac{\pi}{2}-t
Thì:
I=\int_0^{\dfrac{\pi }{2}} {\ln \dfrac{{{{\left( {1 + {\mathop{\rm s}\nolimits} {\rm{inx}}} \right)}^{1 + \cos x}}}}{{1 + \cos x}}} dx=-\int^0_{\dfrac{\pi }{2}} \ln {\dfrac{\left(1+\cos t\right)^{1+\sin t}}{1+\sin t}}dt=\int_0^{\dfrac{\pi }{2}} \ln {\dfrac{\left(1+\cos t\right)^{1+\sin t}}{1+\sin t}}dt
Vậy:
2I=\int_0^{\dfrac{\pi }{2}} {\ln \dfrac{{{{\left( {1 + {\mathop{\rm s}\nolimits} {\rm{inx}}} \right)}^{1 + \cos x}}}}{{1 + \cos x}}} dx+\int_0^{\dfrac{\pi }{2}} \ln {\dfrac{\left(1+\cos x\right)^{1+\sin x}}{1+\sin x}}dx
=\int_0^{\dfrac{\pi }{2}} \ln (1+\sin x).(1+\cos x-1)+\ln(1+\cos x)(1+\sin x-1)dx
=\int_0^{\dfrac{\pi }{2}} \ln (1+\sin x).\cos x.dx+\int_0^{\dfrac{\pi }{2}} \ln (1+\cos x).\sin x.dx
=\int_0^{\dfrac{\pi }{2}} \ln (1+\sin x).d(1+\sin x)-\int_0^{\dfrac{\pi }{2}} \ln (1+\cos x).d(1+\cos x)
=\ln (1+\sin x).(1+\sin x)-(1+\sin x)-\ln (1+\cos x).(1+\cos x)+(1+\cos x) \bigg|^\dfrac{\pi}{2}_0
Bài 2. Tính tích phân sau: I=\int \sqrt[3]{\left( \sin (x)^3 + \cos (x)^3 \right)\left( \sin (x) - \cos (x) \right)^3} dx
Ta có:
I=\int \sqrt[3]{\left( \sin^3x + \cos^3x \right)\left( \sin (x) - \cos (x) \right)^3} dx
=-\int \sqrt[3]{\left( \sin^3x + \cos^3x \right)}.d\left( \sin +\cos x \right)
=-\int \sqrt[3]{\left( \sin x + \cos x \right).\left(1-\sin x.\cos x\right)}.d\left( \sin x +\cos x \right)
Đặt: t=\left( \sin x +\cos x \right) \Rightarrow \sin x.\cos x=\dfrac{t^2-1}{2}
Do đó:
I=-\int\sqrt[3]{t.\left(1-\dfrac{t^2-1}{2}\right)}dt
=\dfrac{1}{\sqrt[3]{2}}\int\sqrt[3]{t.\left(t^2-3\right)}dt
Bài 3. Tính tích phân: I=\displaystyle \int_1^2 \dfrac{x-1}{x^2\sqrt{2x^2-2x+1}}dx
Ta có:
I=\displaystyle \int_1^2 \dfrac{x-1}{x^2\sqrt{2x^2-2x+1}}dx
=\displaystyle \int_1^2 \dfrac{2x^2- x - (2x^2-2x+1)}{x^2\sqrt{2x^2-2x+1}}dx
=\displaystyle \int_1^2\dfrac{ \dfrac{x(2x-1)}{\sqrt{2x^2-2x+1}}dx- \sqrt{2x^2-2x+1}dx}{x^2}
=\displaystyle \int_1^2 \dfrac{xd(\sqrt{2x^2-2x+1})- \sqrt{2x^2-2x+1}dx}{x^2}
=\displaystyle \int_1^2 d\left(\dfrac{\sqrt{2x^2-2x+1}}{x}\right)(1)
=\left(\dfrac{\sqrt{2x^2-2x+1}}{x}\right)\bigg|_1^2
=\dfrac{(\sqrt{5}-2)}{2}.
Bài 4. Tính tích phân\int\limits_0^{\ln 3} {\frac{{{e^x} - 1}}{{{e^{2x}} + 1}}dx}
Ta có:
\int\limits_0^{\ln 3} \frac{e^x - 1}{e^{2x} + 1}dx=\int\limits_0^{\ln 3} \frac{e^{2x}-(e^{2x}+1)+e^x}{e^{2x} + 1}dx=\int\limits_0^{\ln 3} \frac{e^{2x}}{e^{2x} + 1}dx-\int\limits_0^{\ln 3} dx+\int\limits_0^{\ln 3} \frac{e^x}{e^{2x} + 1}dx
Mà:
\int\limits_0^{\ln 3} \frac{e^{2x}}{e^{2x} + 1}dx=\dfrac{1}{2}\int\limits_0^{\ln 3} \frac{1}{e^{2x} + 1}d(e^{2x})=\dfrac{1}{2}.\ln\bigg|e^{2x} + 1\bigg|\bigg|_0^{\ln 3}
\int\limits_0^{\ln 3} dx=x\bigg|_0^{\ln 3}
\int\limits_0^{\ln 3} \frac{e^x}{e^{2x} + 1}dx=\int\limits_0^{\ln 3} \frac{1}{e^{2x} + 1}d(e^x)
Đặt: e^x=\tan t
Ta sẽ thu được kết quả.
Bài 5. Tính: \displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sqrt{\tan x}dx
Đặt: t=\sqrt{\tan x} \Rightarrow t^2=\tan x \Rightarrow 2tdt=\dfrac{1}{\cos^2x}dx=(1+\tan^2x)dx=(1+t^4)dx
Vậy:
I=\int \limits^{\sqrt{\sqrt{3}}}_1\dfrac{t.2t}{1+t^4}dt.=2.\int \limits^{\sqrt{\sqrt{3}}}_1 \dfrac{t^2}{1+t^4}dt=\int \limits^{\sqrt{\sqrt{3}}}_1 \dfrac{2}{\dfrac{1}{t^2}+t^2}dt.
=\int \limits^{\sqrt{\sqrt{3}}}_1 \dfrac{1-\dfrac{1}{t^2}}{\left(\dfrac{1}{t}+t\right)^2-2}dt+\int \limits^{\sqrt{\sqrt{3}}}_1 \dfrac{\dfrac{1}{t^2}+1}{\left(\dfrac{1}{t}-t\right)^2+2}dt
Mà:
\int \limits^{\sqrt{\sqrt{3}}}_1 \dfrac{1-\dfrac{1}{t^2}}{\left(\dfrac{1}{t}+t\right)^2-2}dt=\int \limits^{\sqrt{\sqrt{3}}}_1 \dfrac{1}{\left(\dfrac{1}{t}+t\right)^2-2}d\left(t+\dfrac{1}{t}\right)
\int \limits^{\sqrt{\sqrt{3}}}_1 \dfrac{\dfrac{1}{t^2}+1}{\left(\dfrac{1}{t}-t\right)^2+2}dt=\int \limits^{\sqrt{\sqrt{3}}}_1 \dfrac{1}{\left(t-\dfrac{1}{t}\right)^2+2}d\left(t-\dfrac{1}{t}\right)
0 nhận xét